Injectable Medications \& IV Fluids mMole, mEq, mOsm

Part I
Chapter 12
Please review chapter 9

Objectives

- Calculate the concentration in millimols, milliequivalents \& milliosmols.
- Calculate the electrolyte weight required to prepare a solution with a desired millimols, milliequivalents or milliosmols.
- Convert from $\mathrm{mg}^{\%}$ / to millimols and milliosmols and vice versa.

Milliequivalent

- What is the concentration in milligrams $/ \mathrm{mL}$ of a solution containing 10 mEq of $\mathrm{KCl} / 5 \mathrm{~mL}$
- MWt of KCl 74.5

Milliequivalent

- What is the concentration in $\mathrm{mg} / \mathrm{mL}$ of a solution containing 4 mEq of calcium chloride $\left(\mathrm{CaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}\right) / \mathrm{mL}$.
- Mwt of CaCl_{2} di-hydrate is 147
- Mwt of CaCl_{2} is 111

Osmolarity and Osmolality

- What is the osmolarity of $0.9 \% \mathrm{NaCl}$ solution (MWt 58.5)?

Osmolarity and Osmolality

- 2 common ways of expressing Osmol concentration are osmolarity and osmolality.
- Osmolarity $=\#$ of Osm/L of solution
- Osmolality $=\#$ of $\mathrm{Osm} / \mathrm{Kg}$ of water
- At very diluted solutions osmolarity $=$ osmolality

Osmolarity and osmolality

Osmolarity or Osmolality?

- 30 mOsm in 100 mL solution 300 mosmolar
- 43 mOsm in 10 mL water 4300 mOsmolal
- $0.67 \mathrm{mOsm} / \mathrm{mL}$ solution mosmolar
- 1 mOsm /gram water mOsmolal
- To convert from osmolarity to osmolality you need to know specific gravity.

Extra problem

- How many milliequivalents of Na^{+}are there in 50 mL dose of the following solution? Rx
$\mathrm{Na}_{2} \mathrm{HPO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{NaH}_{2} \mathrm{PO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$
Water qs ad

	Mwt
20 gram	268
40 gram	138
100 mL	

Atomic weight: $\mathrm{Na}=23, \mathrm{P}=31, \mathrm{O}=16, \mathrm{H}=1$

Extra problem

- How many milliequivalents of Na^{+}are there in 50 mL dose of the following solution?

Rx		Mwt	
$\mathrm{Na}_{2} \mathrm{HPO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$	20 gram	10 g	268
$\mathrm{NaH}_{2} \mathrm{PO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$	40 gram	20 g	138
Water qs ad	100 mL	50 ml	
$\mathrm{mEq}=(10000 \mathrm{mg} / 268) \mathrm{X} 2=74.6 \mathrm{mEq}$			
$\mathrm{mEq}=(20000 \mathrm{mg} / 138) \times 1=144 \mathrm{mEq}$			

Total $\mathrm{mEq}=218.6$
Atomic weight: $\mathrm{Na}=23, \mathrm{P}=31, \mathrm{O}=16, \mathrm{H}=1$

Application 1

- Calculate the milliequivalents of sodium, potassium and chloride, the millimoles of dextrose and the osmolarity of the following parenteral solution:
Rx
Dextrose 50 g
Sodium Chloride 4.5 g
Potassium Chloride 1.49 g

MWt
180
58.5
74.5

Extra problems

1. How many $\mathrm{mEq} /$ Liter are present in a solution containing $10 \mathrm{mg} \%$ of CaCl_{2} ions?
2. How many grams of magnesium chloride should be used to prepare 120 mL of a solution intended to contain 3 mEq of magnesium ion / 10 mL (MWt 95)?
3. What is the percentage strength of 200 mOsmolar potassium chloride solution?

Extra problem

- You prepared $\underline{\mathbf{1 0}} \mathrm{mL}$ of 10% solution of magnesium acetate $\left(\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{MgO}_{4}\right)$ for a patient.
1-How many millimols, milliequivalents (of Mg^{+2}) will the patient receive?
2 - What is the \# mOsmol?
(MWt 142).

Application 2

- Calculate the number of mOsmols in a 700 mL of normal saline solution.
- Calculate the number of $\mathrm{mOsm} / \mathrm{L}$ in a solution of 5% dextrose (MWt 198) and 0.2% sodium chloride.

Common mistakes

mEq, versus mOSm. (valence or \# of species).
Calculate the \# or Osm, mOsm versus osmolarity.
Calculating the molecular weight of anhydrous and hydrates.

