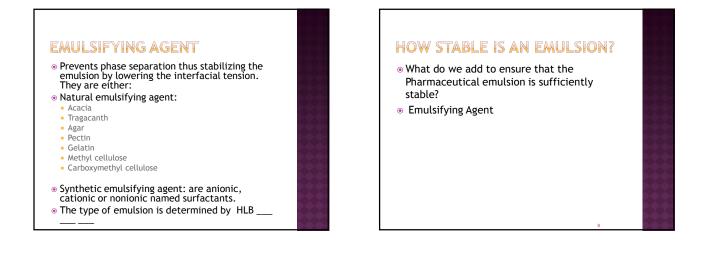
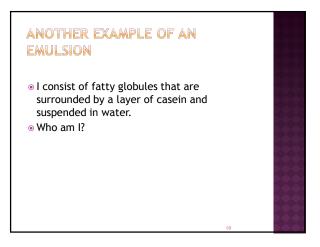
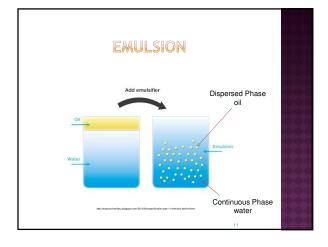
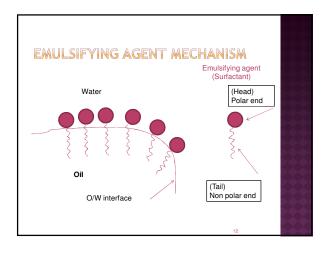

DISPERSION


- A liquid preparation containing undissolved or immiscible drug distributed throughout a vehicle.
- The substance distributed is termed dispersed phase.
- The vehicle is termed dispersing phase or dispersion medium.
- All this make a dispersed or disperse system (Dispersion)







PHAR 632 Fall 2015

MEDICINAL EMUSLIONS

- Medicinal Emulsion intended for oral administration are usually stabilized Oil in water dispersion o/w.
- O Castor oil Emulsion: used as laxative
 O

EMULSIFICATION? HOW

- 1. Surface Tension reduction:
- Emulsifying agent(surfactant or wetting agents) are used to reduce interfacial tension of two immiscible liquids thus reducing the repellent forces between liquids.
- 2. Oriented Wedge Theory:
- Monolayers of emulsifying agent are curved around the droplet of the internal phase.
- Emulsifying agent that are greatly hydrophilic promote an oil-in-water emulsion. Emulsifying agents that are greatly hydrophobic
- promote a water-in-oil emulsion.

- 3. Plastic Film Theory
- The emulsifying agent is placed at the interface between the oil and water.
- Surrounding the droplets of the internal phase as a thin layer of film adsorbed on the surface of the drops.
- The film prevents the contact and coalescing of the dispersed phase.

EMULSIFYING AGENT

 Prevents phase separation thus stabilizing the emulsion by lowering the interfacial tension.

EMULSIFYING AGENT Natural emulsifying agent: Acacia Tragacanth Agar Pectia Ocatatin Methyl cellulose Carboxymethyl cellulose Synthetic emulsifying agent: are anionic, cationic or nonionic named surfactants. The type of emulsion is determined by HLB _____

HLB Value	Surfactant Application			
0-3	Antifoaming agents			
4-6	W/O emulsifying agent			
7-9	Wetting agent			
8-18	O/W emulsifying agent			
13-15	Detergents			
10-18	Solubilizing agent			
Ref: Comprehensive pharmacy review 7 th edition p.51				

PHAR 632 Fall 2015

- Anionic: sodium lauryl sulfates and soaps
 Cationic: benzalkonium chloride used as
- ____?____ effect
- Non ionic:
- Sorbitan esters: Spans are hydrophobic form w/o emulsions. Have low HLB value (1-9)
- Polysorbates: Tweens are hydrophilic form o/w emulsions. Have high HLB value (11-20)

EMULSION STABILIZED BY SYNTHETIC EMULSIFYING AGENT

- Oil miscible phase and water miscible phase are both heated to 70-80°C
- Then combined with stirring until emulsion cools.
- Note: heat labile ingredients are to be added in the final emulsion after it has cooled to 40°C.

METHOD OF PREPARATION WITH NATURAL EMULSIFYING AGENT.

Classical acacia stabilized emulsions are prepared by one of the following methods:

- 1. Dry gum method (Continental) method.
- 2. Wet gum method (English) method.
- 3. Bottle method.
- 4. Nascent soap method.

EMULSION PREPARATION

- The preparation of an emulsion follows two main steps:
- 1. preparation of a concentrate called the primary emulsion
- 2. dilution of the concentrate.

Parts/		l oil Volatile volume Parts/v	
ril phase ?	3	2	
queous phase 2	?	2	
mulsifying 1 Igent gum)	1	?	

PRIMARY EMULSION PREPARATION Use the ratio of oil phase :water phase: emulsifying agent. Triturate emulsifying agent with oil in a dry porcelain mortar. Why not glass mortar? Water is then added all at once, triturated immediately, rapidly and continuously about 3 minutes primary emulsion. Other ingredient mixed with external phase are then added.

DRY GUM METHOD (CONTINENTAL) METHOD

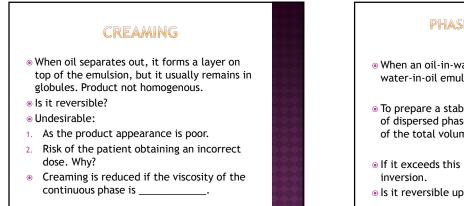
- Extemporaneously prepared emulsions for oral administration are usually made by the continental or dry gum method.
- Mixing the emulsifying gum (usually Acacia) 1. with the oil.
- 2. The gum and oil then mixed with the aqueous phase to form the primary emulsion.
- Add remaining water to the primary 3. emulsion.
- Add colorant, flavoring agent and 4. preservative.

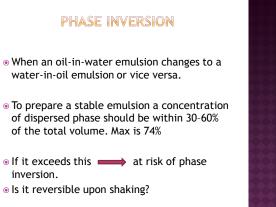
WET GUM METHOD (ENGLISH) METHOD

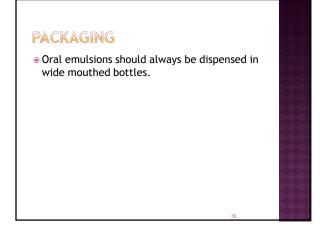
- Same proportion of oil, water and gum are used as in the dry gum.
- Order of mixing is different.
- Mucilage of the gum is prepared.
- Oil is added in small proportions and then rapidly mixed to emulsify the oil after each addition.
- Emulsion is made up to volume with remaining water.

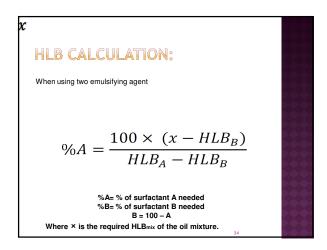
BOTTLE METHOD

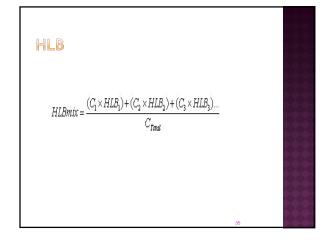
- Used for preparation of emulsions from of low viscosity such as _____ oils.
- Ratio of oil to water to gum is _:_:_

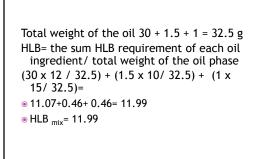

ENHANCING EMULSION STABILITY

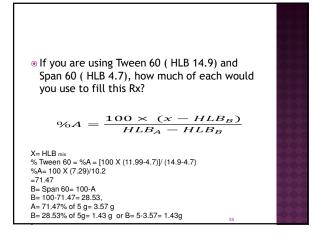

- An emulsion stability can be enhanced by passing through _
- Emulsion passes through very small holes to
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 reduce the globule size.
- Globules will have uniform in size, thus
 enhances stability.
- Emulsion is forced through a small aperture.


STABILITY OF EMULSIONS Possibility of break down of emulsions 1. Cracking • Is it reversible? 2. Creaming Oracking occurs Phase inversion. 3 temp).


CRACKING


- When the disperse phase coalesces (fuse) and forms a separate layer termed coalescence.
- 1. Oil turns rancid during storage.(due to
- 2. Incompatible emulsifying agent.
- 3. Decomposition of the emulsifying agent. Causing the two phases to separate.





CALCULATING THE	REQUI	RED HLB		
Rx		HLB		
Mineral Oil	30 g	12	000	
Wool fat	1.5g	10	000	
Cetyl Alcohol	1g	15		
Emulsifier	5 g		000	
Water QS AD	90 mL		000	
If you are using Tween 60 (HLB 14.9) and Span 60 (HLB 4.7), how much of each would you use to fill this Rx?				
		36		

