Isotonicity Colligative Properties and E values

Isotonic solutions

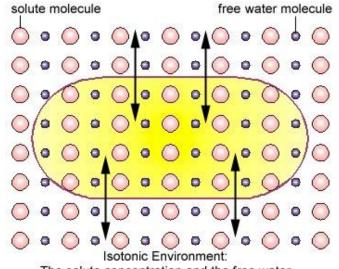
Objectives

- Understand and use the dissociation factor(1).
- Use the NaCl E value in adjusting a solution isotonicity, and performing other isotonicity related calculations (dilution and adjustment).
- Understand colligative properties and its use in adjusting solutions isotonicity.

Isotonic solutions

Why prepare isotonic solution?

Which pharmaceutical solutions are


isotonic?

Parenteral solutions?

Nasal solutions

Ophthalmic solutions

Enemas

The solute concentration and the free water concentration are the same inside and outside the cell.

Water flows in and out of the cell at an equal rate.

Isotonicity

Name another IV isotonic solution?

Solutions having the same osmotic pressure as that of **0.9% NaCl** are considered isotonic.

 NaCl equivalent E of a substance: The amount (in grams) of NaCl with equivalent osmotic pressure as that of 1 g of the substance.

Isotonicity

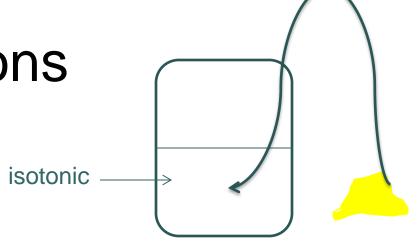
You should be able to calculate the % concentration of an isotonic solution of any **substance** if you know its E

 Isotonic sodium chloride solution contains 0.9% NaCl, if a sodium chloride equivalent of boric acid is 0.52, what is the percentage strength of an isotonic solution of boric acid?

• • E value of Boric acid is 0.53

 $0.53gNaCl \approx 1gBoric acid$

 $0.9gNaCl \approx XgBoricacid$


$$x = \frac{1x0.9}{0.53} = 1.7$$

A solution of 1.7 % of Boric acid is isotonic

Isotonic Solutions

Useful equation (White Vincent)

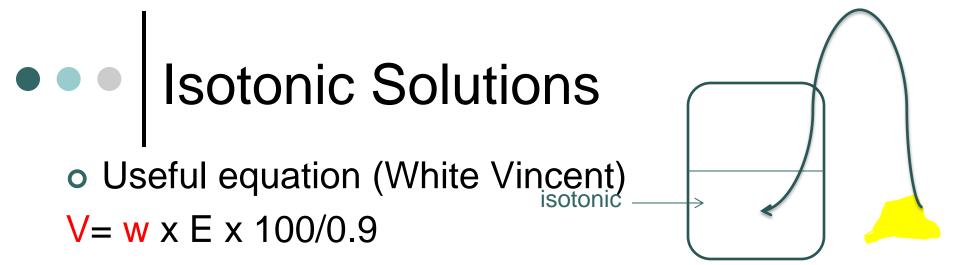
 $V = w \times E \times 100/0.9$

V= volume of the isotonic solution prepared by w (grams of the substance)

How many mL can be rendered isotonic with 1g Atropine sulfate, (E=0.13)?

What is the concentration of the isotonic solution of Atropine sulfate? (what is the % strength of an isotonic solution of Atropine?)

How can you prepare 1% isotonic Atropine sulfate solution?


Isotonic Solutions

Useful equation (White Vincent)

$$V = w \times E \times 100/0.9$$

How many mL can be rendered isotonic with 1g Atropine sulfate, (E=0.13)?

 $V = 1g \times 0.13 \times 100/0.9 = 14.4 \text{ mL}$

What is the concentration of the isotonic solution of Atropine sulfate? (what is the % strength of an isotonic solution of Atropine?)

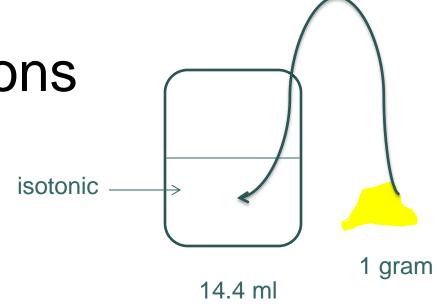
• • E value of Atropine acid is 0.13

 $0.13gNaCl \approx 1gAtropine$

$0.9gNaCl \approx XgAtropine$

$$x = \frac{1x0.9}{0.13} = 6.9$$

A solution of 6.9% of atropine is isotonic


 $V = w \times E \times 100/0.9$

 $100 = w \times 0.13 \times 100/0.9 = 6.7 g$

Isotonic Solutions

Useful equation (White Vincent)

$$V = w \times E \times 100/0.9$$

How can you prepare 1% isotonic Atropine sulfate solution?

 $V = 1g \times 0.13 \times 100/0.9 = 14.4 \text{ ml}$

What about the rest of the 100 ml?

We can add NaCl or another substance to adjust the isotonicity.

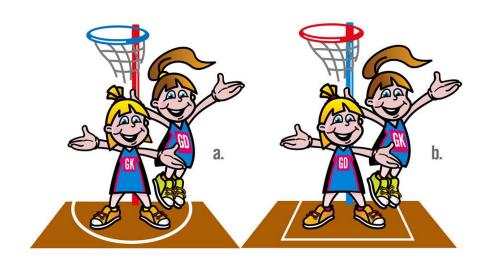
We have 100-14.4 = 85.6 ml to adjust its isotonicity If we use NaCl the 0.9% of the 85.4 ml = 0.77 g

• Isotonicity

Naphazoline HCI (E=0.27) 1%

NaCl qs

Water qsad 30 ml


Dispense isotonic sol

Naphazoline HCI (E=0.27) 1%

NS [normal saline] qs

Water qsad 30 ml

Dispense isotonic sol

Isotonicity

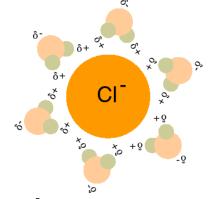
Sometimes we need to adjust the isotonicity using another agent other than NaCl. Why?

Purified water qs 60 mL

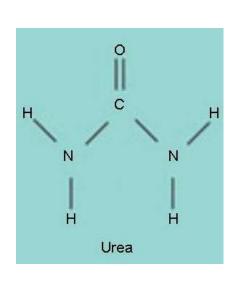
Prepare isotonic solution

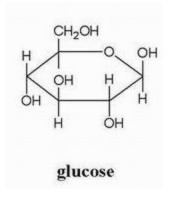
Phenacaine HCI 1% 0.2
Chlorobutanol 0.5% 0.24
Boric acid qs 0.52

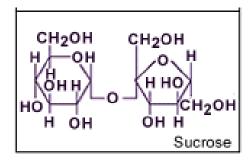
• • Extra problem


 How many milligrams of NaCl are required to prepare the following prescription. Note: Epinephrine solution is isotonic.

• Atropine Sulfate (E = 0.14) 1%


Epinephrine solution 1:2000
 8 mL


Purified water Qs30 mL



 Definition: Properties that depend on the concentration of the solute molecules or ions, not the identity of the solute.

• • Colligative Properties

- Elevation of boiling point
- Depression of the vapor pressure
- Depression of freezing point
- Osmotic pressure

Freezing Point Depression

- Definition: It is the point at which the liquid and the solid phases coexist in equilibrium at one atmosphere.
- Freezing points of a pure solvent is higher than the freezing points of a solution.
- The depression of the freezing point depends on the molal concentration of the solute.

• • Freezing Point Depression

For water $K_f = 1.86 \frac{\deg}{kg.mole}$ (in diluted solutions m=M). What does this equation mean? It means, but adding one mole of particles the freezing point of the 1 kilogram solvent (water) drops by 1.86°C.

Freezing Point Depression

• If you have 0.1 M solution of dextrose will result in $\Delta T_f = 0.1 \times 1.86 = 0.186$

o 0.1 M solution of NaCl will result in $\Delta T_f = \iota x$ 0.1 x1.86. If $\iota = 1.9$ then $\Delta T_f = 0.353$.

Calculate the ι of solution of Na₂SO₄ (the dissociation percentage is 85%). Can you find ΔT_f for 0.1 Na₂SO₄?

Isotonic Solutions

- Freezing point depression,
 - An isotonic solution has a freezing point of -0.52 ^oC.

The isotonicity of parenteral fluids can be adjusted with NaCl or glucose till the solution acquires freezing point of -0.52 $^{\circ}$ C.

(Zatz Pharmaceutical Calculations book pg 244)

• Preparation of isotonic solution

$$w = \frac{0.52 - a}{b}$$

0.52 is the ΔT_f of isotonic solutions w = weight% of the adjusting solution a= freezing point (depression) of the solution to be adjusted. b= ΔT_f of 1% of the adjusting solution

• • Problem

- Calculate the NaCl needed to adjust the isotonicity of a 50 mL solution of 0.5% lidocaine HCl
- 1% lidocaine HCl causes a ∆Tf of 0.13 °C.
- 1% NaCl causes a ∆Tf of 0.576 °C.

• • References

- Amiji Applied Physical Pharmacy book
- Physical Pharmacy by Martin
- o www.chemguide.co.uk
- Physicochemical Principles of Pharmacy Alexander Florence Chapter 2 and 3.