Objectives

- Calculate the minimum measurable and weighable quantities using the sensitivity requirement of the balance.
- Calculate the maximum expected percentage errors.
- Apply the aliquot method to perform prescriptions calculations with quantities below the sensitivity limits of the available balances and glassware.

What is the definition? How can we decide on?

1- Sensitivity requirement?
2- Limit of \% error ?

$S R$ is needed to

I. Calculation of minimum weighable quantity:

$M W Q=\frac{100 \% \times S R}{\% \text { Error }}$
II. Calculating minimum weighable quantity (MWQ)

$$
\% \text { Error }=\frac{100 \% \times S R}{M W Q}
$$

Percentage Error

Calculate the maximum expected percentage error upon weighing 190 mg and 1900 mg using a torsion balance with $\mathrm{SR}=6 \mathrm{mg}$?

$$
\% \text { Error }=\frac{100 \% \times S R}{M W Q}
$$

MWQ

What is the minimum weighable quantity (MWQ) for a balance with SR $6 \mathbf{m g}$? If the maximum allowed error is 5% or 3% ?

Aliquot

- How can I weigh 12 mg if the MWQ is 120 mg ?

DRY ALIQUOT METHOD

Double check your answer:
Drug1/mixture1 $=x /$ mixture2 $120 \mathrm{mg} / 1200 \mathrm{mg}=\mathrm{x} / 120 \mathrm{mg}$

Rx
Atropine Sulfate $0.025 \mathrm{mg} / \mathrm{kg}$
Lactose
Sucrose aa QSAD 120 mg

Mix et ft molded tablets DTD \# 10
The patient's weight $=154 \mathrm{lb}$

How can you fill this prescription with accuracy $=95 \%$?

DRY ALIQUOT METHOD

Rx
Digoxin $\quad 30 \mathbf{~ m g}$
Calcium carbonate qs ad 30 g
M. ft div. Charts \# 100

Set the MWQ at 200 mg
Explain the correct procedure that you may follow to fill this prescription?

- I will weighdigoxin
- Mix it with CaCO_{3}
- From the mixture I will use , as a source of 30 mg of digoxin
- I will add more CaCO_{3} to bring the final weight to 30 gram .

Triturations

- Solid dilutions of potent drugs, their concentration is expressed as ratio strength.
- If you have a trituration of drug A with 1:20 w / w ratio strength, and you need 50 mg of drug A . How much is your aliquot?

Trituration

If you need to need to weigh 5 mg of drug A , what is the minimum trituation strength can you use? Your MWQ is 120

- 1:20
- 1:24
- 1:30
- 1:50

Calculating Volume Errors

A 100 mL measuring cylinder has an error of 1 mL , what is the maximum expected percentage error when you use this cylinder to measure 20 mL and 90 mL ?

- \% error = error $\times 100$

Measured Volume

**The measuring cylinders have constant error magnitude, but the \% error depends on the measured volume.

WET ALIQUOT METHOD

The least measurable quantity (LMQ) in liquids $=20 \%$ of the available measuring cylinder.
LMQ of 100 mL cylinder is 20 mL
LMQ of 50 mL cylinder is 10 mL
LMQ of 20 mL cylinder is 4 mL
LMQ of 10 mL cylinder is 2 mL

WET ALIQUOT METHOD

Strong Iodine Solution
Aq. dist.
0.15 mL

Qs ad 30 mL
The available measuring cylinders are 10,50 and $100 \mathrm{~mL}, \mathrm{LMQ}=$? mL
Explain the steps of filling the prescription.

You have the following prescription to

fill....

Rx

Drug A 2 mg
Lactose QSAD 120 mg
DTD 14 tablets

The available balance has SR of 6 mg , and the required accuracy is 95%.
When performing the calculations count for one excess tablet.

How to solve this problem?

A prescription calls for a desired quantity of 10 mL of $2 \% \mathrm{w} / \mathrm{v}$ drug solution in total of 40 mL liquid, the smallest measuring cylinder you have is 100 mL , with divisions of 2 mL , the first division is at 10 mL .

How can you fill this prescription?
Calculate the ratio strength of the resultant solution?

